

UNIVERSITY OF LIVERPOOL

General purpose detectors: ATLAS and CMS towards HL-LHC

Monica D'Onofrio

University of Liverpool

With many thanks to Alex Tapper, Joel Goldstein, Steve McMahon, Pedro Texeira, Davide Costanzo **and** the fantastic speakers at LHCP presenting ATLAS and CMS talks - take a look if you can!!!

PPAP Meeting, Birmingham 25/6/2024

The Large Hadron Collider

Hosts of dedicated large (LHCb, ALICE) and small (FASER, SND, MOeDAL, LHCf, TOTEM....) experiments

MS

On since ~2010, with 7/8/13/13.6 TeV pp collisions (+Heavy Ion collisions), the LHC provided huge sets of data and well through its Run 3....

12(0)

LHC 27 km

CERN Prevessin

ATLAS and CMS Run 3 data

In Run. 3: upgrade of the accelerator, leading to an increased centre-of-mass energy (13.6 TeV), as well as renewed detectors and novel triggers

Some examples of Phase 1 upgrades

CMS Gas Electron Multiplier

> UK contributions: L1 Trigger

ATLAS New Small Wheel

> UK contributions: hardware, firmware and software upgrades for the L1Calo and HLT&DAQ systems

98 fb-1 of delivered **pp** luminosity at 13.6 TeV

1.91 nb-1 of **PbPb** data during 2023

25/06/2024

Data up to 2024-05-28

2024 (pp 13.6 TeV)

I HC delivered: 21 98 fb⁻¹

350_C

ATLAS and CMS Run 3 data

In Run. 3: upgrade of the accelerator, leading to an increased centre-of-mass energy (13.6 TeV), as well as renewed detectors and novel triggers

In the second second

CMS Gas Electron Multiplier

> **UK** contributions: L1 Trigger

ATLAS New Small Wheel

> UK contributions: hardware, firmware and software upgrades for the L1Calo and HLT&DAQ systems

Run 4 - 5...

Collaborations

ATLAS Collaboration (status: 1 June 2024)

- 185 Institutions (253 institutes) from 42 countries + 15 Technical Associate Institutes
- 2924 Scientific authors (among which 1979 contribute to M&O share)
- 329 Qualifiers for authorship
- 1178 Physics PhD students
- 1322 Engineers and technicians
- 88 Engineering students
- 6036 Active members

UK: 15 institutes Agentina Autorial Belarus Bela **ATLAS** Collaboration PATLAS

General purpose detectors. AI LAS and CMS towards HL-LHC

CMS Collaboration

- 6300 persons including 2200 physicists & 2600 students
- 247 institutes from 57 countries and regions, and continuing to welcome new ones!

25/06/2024

UK: 4 institutes ~100 active authors

Physics programme: the energy frontier

- A large fraction of the UK HEP community works within ATLAS or CMS
- The physics programme is also huge \rightarrow usually referred to as Energy frontier

ATLAS Preliminary

Searches for (heavy) new particles usually summarized and presented as this ...

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

+Small-radius (large-radius) jets are denoted by the letter j (J).

6

	Reference 2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678 1903.06248
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678 1903.06248
	1903.06248
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1709.07242 1805.09299 2005.05138 1906.05609 TLAS-CONF-2021-025 TLAS-CONF-2021-043 2004.14636 2207.03925 2004.14636 1904.12679
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
Axial-vector med. (Dirac DM) $-2j$ -139 m_{wead} 3.8 TeV $g_e 0.25, g_i = 1, m(\chi) = 10 \text{ FeV}$ $g_{g-1} = 2, g_i = 1, m(\chi) = 10 \text{ FeV}$ $g_{g-1} = 2, g_i = 1, m(\chi) = 10 \text{ FeV}$ $g_{g-1} = 2, g_i = 1, m(\chi) = 10 \text{ FeV}$ $g_{g-1} = 2, g_i = 1, m(\chi) = 10 \text{ FeV}$ $g_{g-1} = 2, g_i = 1, m(\chi) = 10 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ $g_{g-1} = 2, m(\chi) = 100 \text{ FeV}$ <th< td=""><td>L-PHYS-PUB-2022-036 2102.10874 2108.13391 TLAS-CONF-2021-036</td></th<>	L-PHYS-PUB-2022-036 2102.10874 2108.13391 TLAS-CONF-2021-036
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 TLAS-CONF-2022-052 2303.01294
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2210.15413 1808.02343 1807.11883 TLAS-CONF-2021-040 1812.07343 TLAS-CONF-2021-018 2303.05441
Excited quark $q^* \rightarrow qg$ -2 j-139q^* mass6.7 TeVonly u^* and d^* , $\Lambda = m(q^*)$ Excited quark $q^* \rightarrow qg$ 1 y1 j-36.7q^* mass5.3 TeVonly u^* and d^* , $\Lambda = m(q^*)$ Excited legion τ^* 2 r2 r2 j-1 39p^* mass3.2 TeVExcited legion τ^* 2 r $\geq 2 j$ -1 39r	1910.08447 1709.10440 1910.08447 2303.09444
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2202.02039 1809.11105 2101.11961 2211.07505 TLAS-CONF-2022-034 1905.10130

Physics programme: the energy frontier

- A large fraction of the UK HEP community works within ATLAS or CMS
- The physics programme is also huge \rightarrow usually referred to as *Energy frontier*
 - Searches for (heavy) new particles usually summarized and presented as this ...

Zy resonance Wy resonance

Higgs y resonance Color Octect Scalar, k² = 1/2

Overview of CMS EXO result

CMS preliminar

Physics programme: the energy frontier (prospects)

- A large fraction of the UK HEP community works within ATLAS or CMS
- The physics programme is also huge \rightarrow usually referred to as Energy frontier
 - Some HL-LHC prospect studies, done also to understand the impact of the detectors performance (s = 14 TeV, 3000 fb⁻¹per experiment

3000 fb⁻¹(14 TeV) nd CMS towards HL-LHC

3000 fb⁻¹ (14 TeV)

CMS Phase-2 Projection

25/06/2024

Physics programme: Long-lived particles

A large fraction of the UK HEP community works within ATLAS or CMS

The physics programme is also huge \rightarrow usually referred to as Energy frontier

 Adding the (life)<u>time</u> dimension: long-lived particles (LLP), require specialized and dedicated reconstruction techniques

25/06/2024

Physics programme: Long-lived particles

- A large fraction of the UK HEP community works within ATLAS or CMS
- The physics programme is also huge \rightarrow usually referred to as Energy frontier
 - Adding the (life)<u>time</u> dimension: long-lived particles (LLP), require specialized and dedicated reconstruction techniques

25/06/2024

General purpose detectors: ATLAS and CMS towards HL-LHC

Physics programme: beyond our own "definition"...

Collider Production

Indirect Detection

Dark matter and hidden (dark) sectors are a key target for GPDs..

Physics programme: beyond our own "definition"...

DM and Dark Sectors at HL-LHC

For HL-LHC not as many models have been scrutinized, but enough feasibility studies made on benchmark models

ATL-PHYS-PUB-2022-018 Extended Higgs sectors

Axion-like particles

25/06/2024

Physics programme: beyond our own "definition"...

Physics programme: beyond our own "definition"...

Physics programme: beyond our own "definitions"...

Physics programme: beyond our own "definitions"...

EWSB and beyond: Higgs self-coupling $\mathcal{L}_h = \frac{1}{2}m_{\rm H}^2 H^2 + \lambda_3 H^3$ Huge improvements just with the Run 2 dataset reanalysis Reaching our own projections faster than we thought :) Self coupling ATLAS Internal Combined (expected) ATLAS and CMS HL-LHC prospects 3 ab⁻¹ (14 TeV) $\sqrt{s} = 13 \text{ TeV}, 126 - 140 \text{ fb}^{-1}$ --- bbvv (T) 12 10(T) 10 HH combination -- bbτ+τ-SM HH significance: **4***o* Combination Exp 95% CL: [-1.6, 7.2] ---- bbbb ----- Obs 95% CL: [-1.2, 7.2] $0.1 < \kappa_{\lambda} < 2.3$ [95% CL] $-- b\bar{b}ll + E^{\text{miss}}_{+}$ bbγγ $0.5 < \kappa_{\lambda} < 1.5$ [68% CL] bbττ 99.4% CL 95% Cl bbbb ` H v prediction bbZZ*(4l) 68% Cl 292 403 95% CL $b\overline{b}VV(h/h)$ 486 10 20 163 241 Kλ 125 7.2]) • $\kappa_{\lambda} \in [-1.2, 7.2] (\kappa_{\lambda} \in [-1.6, 7.2])$ 68% CL $\kappa_{\lambda} \xrightarrow{18} \kappa_{\lambda} \xrightarrow{1000 \ 2000} \kappa_{2V} \in [0.57, 1.48] \left(\kappa_{2V} \in [0.4, 1.6]\right)$ General purpose detectors: ATLAS and CMS towards HL-LHC ATL-PHYS-PUB-2022-018

17

Data Scouting / Trigger Level Analysis

- enhance sensitivity by pushing thresholds
- respect bandwidth limits by only storing reduced event content
- analysis performed with trigger level objects

ATL-PHYS-PUB-2022-027

2024

- 2022

5

100

50

Novel Graph Neural Network approach \rightarrow optimised all the discriminating information for

> : tracks and vertex

liminary

— DL1r

200

Jet p_T [GeV]

150

GN1

- GN1 Lep

Significantly improved b-tag efficiency and light-jet rejection

General purpose detectors: ATLAS and CMS towards HL-LHC

Towards HL: the CERN Long-term Schedule

- High instantaneous lumi (pileup) \rightarrow improve granularity and timing info
- High integrated lumi = high radiation environment → replacement of tracker and endcap calorimeter
- Huge amount of data (computing, storage) → new trigger & DAQ systems

GPDs upgrade programs at a glance

Inner Tracking Detector (ITk)

One of the main UK deliverables for ATLAS

- Complete replacement of the current inner detector
- Pixel and Strip sensors for a very large total surface
- novel powering and cooling and consistency with upgraded DAQ (1MHz)
- Larger angular coverage ($\eta: 2.5 \rightarrow 4$)
- High radiation tolerance (up to 1 x 10¹⁶ neq/cm²)
- Reduced material

General purpose detectors: ATLAS and CMS towards HL-LHC

TeV

kina

70

Inner Tracking Detector (ITk): status

- A lot of good progress has been made, in UK and elsewhere
- Schedule remains challenging
 - **TK strips:** issues on sensors \rightarrow lot of work to understand and solve problems

Cold tests (-70 deg) on-going

ITK pixels: hybridization process and ASICs - to be watched out but only for pre-production
 Joint task force ATLAS-CMS expert for ASICs

Towards the HL-LHC

ATLAS upgrade: Trigger and DAQ

- Another important UK deliverable
- Phase II TDAQ specifications are challenging:
 - L0 rate 1 MHz with 10us latency
 - EF output rate 10 KHz
 - Estimate event size of 4.6 MB

24

LO Trigger: prototyping and testing

GTYe4 @ VCU118

2 peaks (50-50%), range~15ps → NOT OK

GTHe4 @ ZCU102 1 sharp peak (RMS~0.6ps, range~4ps) → OK DAQ: FELIX prototype testing on-going

25/06/2024

GREAT PROGRESS ON ALL SYSTEMS

157th LHCC Meeting - OPEN Session - Feb 2024

General purpose detectors: ATLAS and CMS towards HL-LHC

25/06/2024

 $1 \cdot TT = 1 \cap T$

CMS calorimeter and DAQ

- CMS calorimeter (ECAL) system fully upgraded
 - Radiation tolerant, shower lateral compactness, fine granularity
 - Resolution 20 ps / channel and contribution to the L1 trigger
- DAQ:
 - 50k high-speed front-end optical links
 - Up to 60 Tb/s data rate, total event size 7-10 MB

UK deliverables in particular on electronics and algorithms for L1 trigger (calorimeter) \rightarrow progressing!

Unified detector readout

Event Network

Dual-function board DTH-400

DAQ data aggregation

Heterogeneous HLT nodes

GPU-equipped servers

RDMA over Converged Ethernet

157th LHCC Meeting - OPEN Session - Feb 2024

General purpose detectors: ATLAS and CMS towards HL-LHC

Computing at HL-LHC

- The HL-LHC presents significant computing challenge
 - A lot of work on-going to cope with that → manageable, exploiting rapidly changing technology landscape and with lot of efforts from people
 - In UK, coordinated efforts (i.e. within the SWIFT-HEP project) to address challenges from various perspective → efficient MC production, efficient analysis software etc.

Example: MC simulation improvement (for Run 3)

General purpose detectors: ATLAS and CMS towards HL-LHC

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UP GRADE/CERN-LHCC-2022-005/

Year

Summary

- ATLAS and CMS are running efficiently in Run 3 and producing many results key to understand the SM and explore beyond:
 - a 'science powerhouse': they are, per-se, facilities rather than experiments, where new ideas are constantly explored → dynamic and innovative
 - Many UK-lead contributions not mentioned here: Flavour physics, entanglement in top-pair production, HI physics and more
 - Furthermore: ECR fora and initiatives (physics and upgrade); open collision data that allow diverse collaborations (use of AI, training of next generation of physicists and more..)
 - Scientific outcomes can be 'enriched' with additional small experiments 'using' GPDs (see Josh's talks)
- Physics prospects for HL-LHC offer incredible opportunities:
 - Higgs-self couplings, New physics models, precision physics
 - Probably conservative, given constant improvements!
- The HL-LHC upgrade of both experiments is well on-going:
 - Challenges are also opportunities, understanding the complexity of new detectors and technologies is key for future facilities and can become a joined effort!
 - Improvements in computing are relevant well beyond collider experiments → sustainability is key

ATLAS: 1286 papers with collision data

111 papers in 2023

- 59 papers in 2024
- 340 Run 2 papers

As the last European strategy and the P5 report underline, HL-LHC remains (one of) the highest priority for our community!

General purpose detectors: ATLAS and CMS towards HL-LHC

Back up

31

General purpose detectors: ATLAS and CMS towards HL-LHC

Physics programme: the energy frontier

A large fraction of the UK HEP community works within ATLAS or CMS

The physics programme is also huge \rightarrow usually referred to as Energy frontier

- Adding the (life)<u>time</u> dimension: long-lived particles, require specialized and dedicated reconstruction techniques
- E.g.: Higgs decaying in long-lived scalars

