Other non-collider experiments and facilities

Carl Gwilliam & Mark Lancaster

1st May 2024

ECFA-UK Kick-off meeting

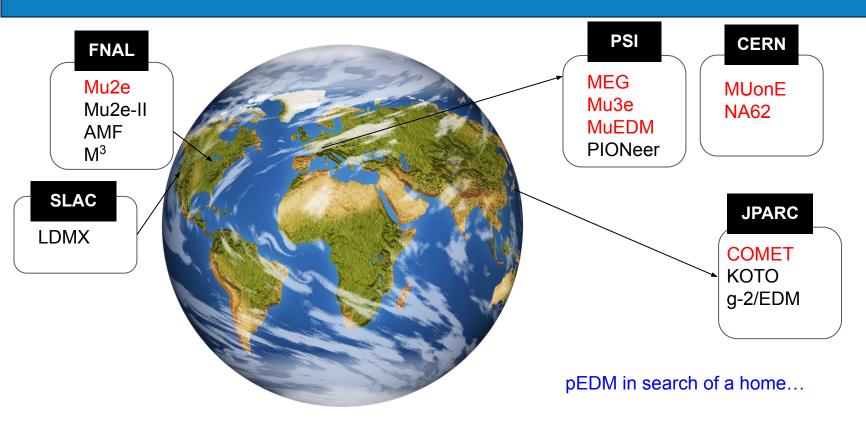
Introduction

Principally using high intensity proton beams with forward detectors for

BSM Searches: light DM, LQs, HNLs, ALPs, dark photons, Z', monopoles ...

CP-violation: EDMs, QCD-axion

SM Studies: QCD, v interactions (e.g. with large v_{τ} samples), ...

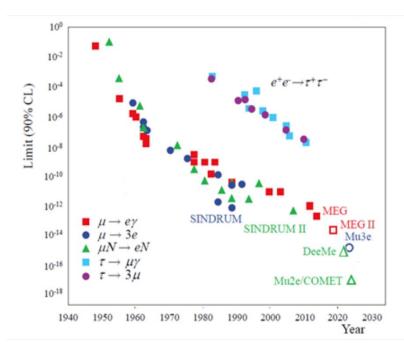

e.g. Mu2e: 4x10²¹ POT, SHiP: 6x10²⁰, KoTO: 3x10²⁰

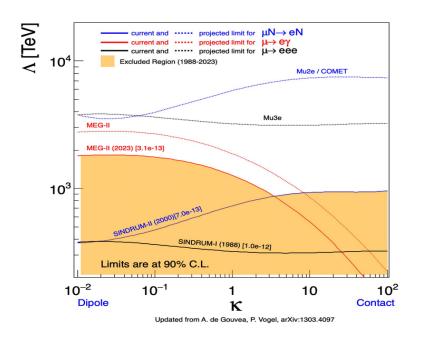
Rare Flavour & EDM Searches: muon, kaon experiments e.g. Mu2e, COMET, MEG-II, Mu3e, NA62, KoTO, MuEDM

Feebly Interacting Particle Searches (FIPs) e.g. SHiP, FASER, FLArE, CODEXb, MoEDAL, AdvSND, FORMOSA,

Rare Flavour & EDM Searches

Flavour: 2026-2036




UK: Birmingham, Bristol, Glasgow, Imperial, Lancaster, Liverpool, Manchester, Oxford, Sussex, UCL Also LHCb, ATLAS, CMS doing CLFV (particularly τ) & LFU

Rare Flavour & EDMs

Looking for a deviation from precise SM prediction e.g. rare Kaon decay, LFU Looking for a signal that is essentially zero in the SM

e.g. muon electric dipole moment (EDM) or charged lepton flavour violation (CLFV)

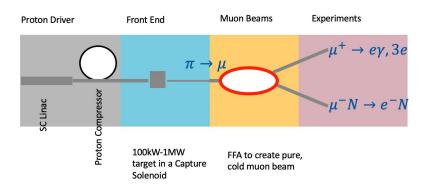
Flavour: Muon CLFV

Current generation

MEG-II has begun data taking: will conclude 2026. Needs new ideas/detectors to improve.

COMET, Mu3e, Mu2e all coming online 2025-2027 and will extend sensitivity by $x10^4$. Conclude ~ 2033 when systematics limited \rightarrow new ideas/detectors

Mu3e benefits from HIMB PSI upgrade (ready 2029/30) as does MuEDM.

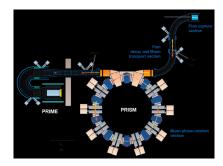

Plenty of BSM ideas out there but the actual measurements don't need much theory since SM prediction is 30 orders of magnitude below experimental sensitivity ...

Flavour: Muon CLFV

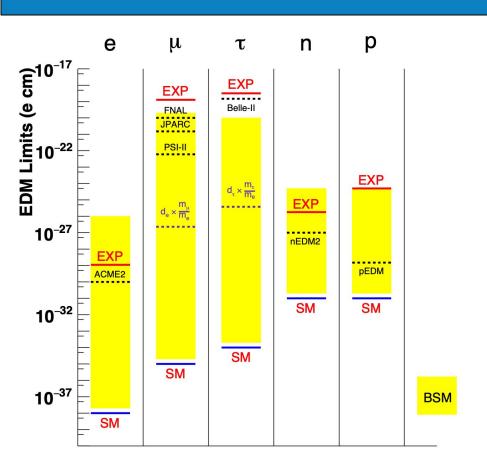
Next generation: construction 2033+, physics: 2040s!

- Mu2e-II (2035-2040) can get x10 with same beam & better detectors
- Further improvement needs new facility e.g. AMF at FNAL or PRISM at JPARC : likely only one.

Challenges: target (1MW beam); cooling (FFAGs); proton rebunching; low- X_0 detectors \rightarrow synergy with Muon collider (NuStorm) & DRD detectors.



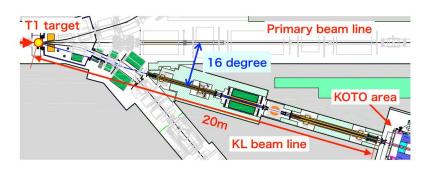
All 3 CLFV modes at one facility/experiment

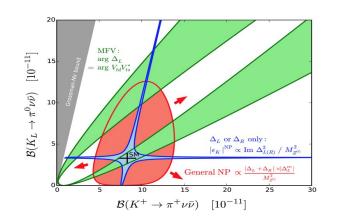

x 100 in $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$

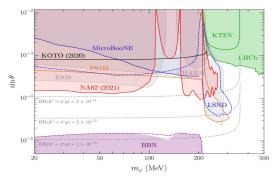
x 1000 in $\mu N \rightarrow eN$

 μ^+e^- (muonium) oscillations

Flavour: EDMs

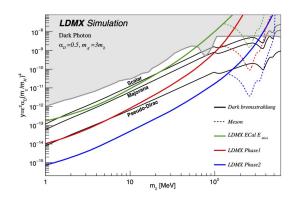

UK involvement in nEDM2, MuEDM: both at PSI & plans for a pEDM prototype.


MuEDM: proof of frozen-spin technique 2026-2028. 6x10⁻²³ measurement after HIMB upgrade : 2030.

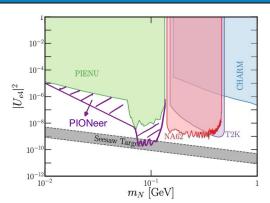

Post P5: pEDM requires a home. First stage proof of principle: 5 MV/m quadrupoles, low X₀ Si polarimeter: 2030s project...

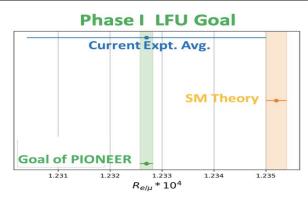
Flavour: Kaons

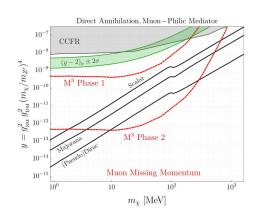
NA62 will run to LS3 and expect 5σ observation of K⁺ $\rightarrow \pi^+ \nu \nu$ (SM BR ~ 9x10⁻¹¹) KOTO (JPARC) sensitivity to ~ 2xSM in 2026 of K^o $\rightarrow \pi^o \nu \nu$ (SM BR ~ 3x10⁻¹¹) KOTO2: 5σ sensitivity with higher power, new (extended) beamline/detectors in 2030s.


HIKE not approved.

Looking now to extend the KOTO2 physics reach / case Synergy with DRD detector goals Will be Kaon theory input into ESPPU


Flavour: presently no UK role


PIONeer: online ~ 2030 at PSI. HNL: 1-120 MeV; 0.005% on LFU, clean V_{ud} at 0.02%

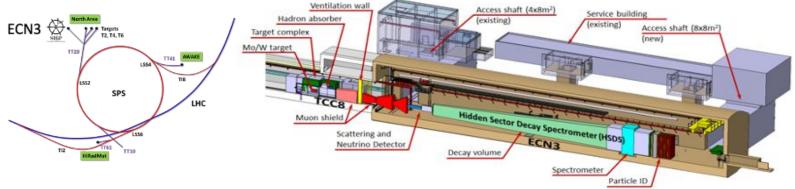

LDMX: online ~ 2030 at SLAC.

Potentially a muon variant at FNAL : **M**³ ~ similar timescale

Contacts

COMET: Yoshi Uchida Mu2e: Mark Lancaster

MuEDM: Gavin Hesketh

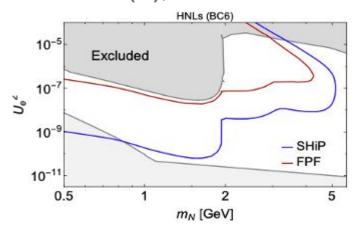

Mu3e: Joost Vossebeld

nEDM2: Philip Harris

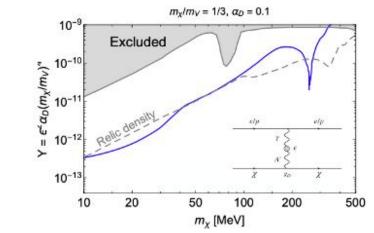
pEDM: Themis Bowcock / Alex Keshavarzi

FIPs (including neutrinos)

- Recently approved beam-dump experiment at SPS HI-ENC3 facility
 - Originally proposed by UK and now led by UK spokesperson
 - Currently 4 UK institutes: involved in muon shield and PID detectors



Will take data from latter half of run-4, collecting 6x10²⁰ POT over 15 years


Accelerator schedule	2022 2023 2024 2025	2026 2027 2028	2029 2030 2031 2032	2033
LHC	Run 3	LS3	Run 4	LS4
SPS (North Area)				
BDF / SHiP	Study Sesign and prototyping	Production / Consta	action / Installation Operation	
Milestones BDF	DR studies	RR	€ B	
Milestones SHiP	TDR studies	↑ PRR	G B	
	Approval for TDR	Submission of TDRs	Facility commissioning	

SHiP Physics

- World-leading sensitivity to a wide range of Hidden sector models
- Decay signature
 - Dark scalars, dark photons, HNLs (N), ALPs

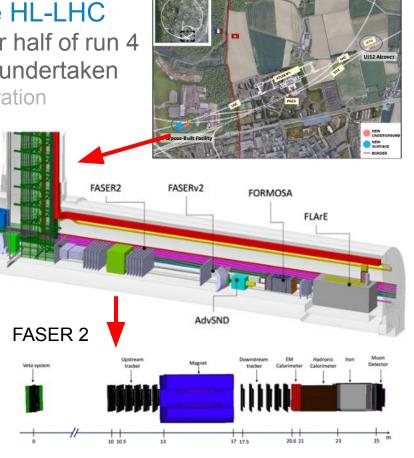
- Scattering signature
 - E.g. Light dark matter interacting via vector portal (V)

- In addition, large sample of v up to ~100 GeV
 - Especially V_T from $D_S \to VT$
 - Measure x-sects for oscillation expts.

	<e>[GeV]</e>	Beam dump	<e>[GeV]</e>	CC DIS interactions	
$N_{\nu_{\tau}}$	6.3	4.1×10^{17}	63	2.8×10^{6}	
$N_{\nu_{\nu}}$	2.6	5.4×10^{18}	40	8.0×10^{6}	
$N_{\nu_{\tau}}$	9.0	2.6×10^{16}	54	8.8×10^{4}	
$N_{\overline{\nu}_*}$	6.6	3.6×10^{17}	49	5.9×10^{5}	
$N_{\overline{\nu}_{\mu}}$	2.8	3.4×10^{18}	33	1.8×10^{6}	14
N_{p_r}	9.6	2.7×10^{16}	74	6.1×10^{4}	

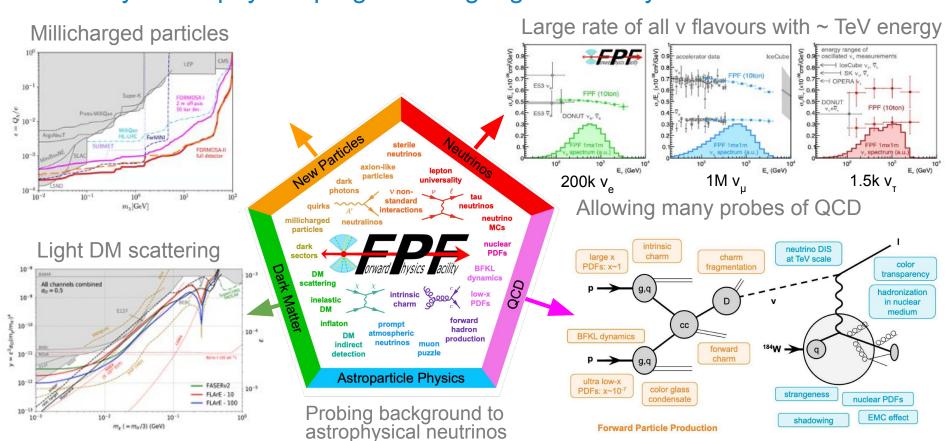
SHiP Plans

- Now ramping up physics studies towards TDR for 2026
 - With several high-priority tasks needing to be done already this year
 - 1. Deciding on He vs vacuum for decay volume → converging on He
 - 2. Optimisation of muon shield → main UK effort
 - 3. Advanced veto
 - 4. Configuration of SND → could be integrated into muon shield
 - 5. Individual signal selection
 - 6. Comprehensive physics case → including new signatures
- UK aiming to submit Sol to Science Board in next year or so
- Lots of opportunities and room to contribute
 - Get in touch with Andrei Golutvin (Spokesperson) or Mitesh Patel (UK SHiP liaison) if interested



Forward Physics Facility (FPF)

- Proposed forward-physics facility at the HL-LHC
 - Again, aiming for data-taking from latter half of run 4
 - Many civil engineering studies already undertaken
 - Can be built in parallel to HL-LHC operation

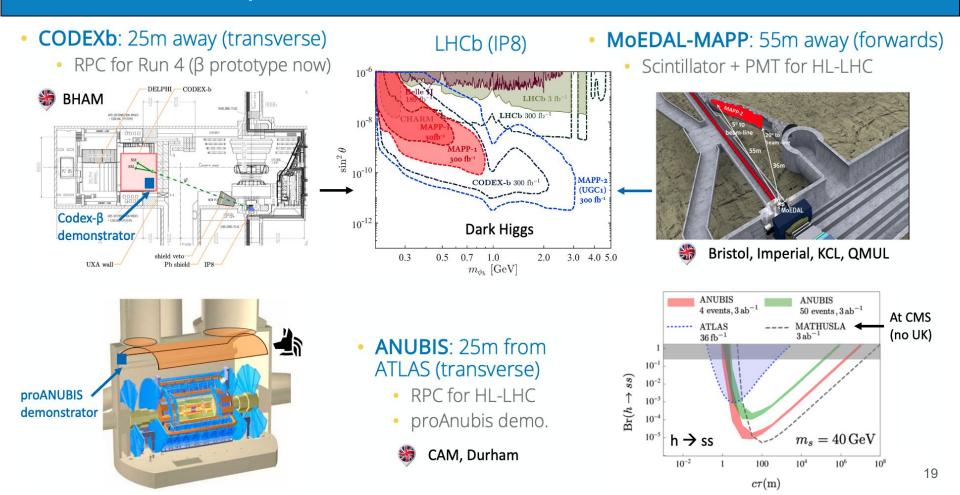


- FASER2: LLP spectrometer
 - 5 UK institutes
 - Leading tracker, magnet, (calo)
- FASERv2: W+emulsion v det.
- AdvSND: Electronic off-axis v detector
 - 1 UK institute (Mario Campanelli)
 - Recently submitted <u>Lol</u> for run-4 upgrade in current TI18 location
- FLArE: LAr TPC for v and DM
 - 1 UK institute: LAr optical readout
- FORMOSA: W+scintillator for mCP

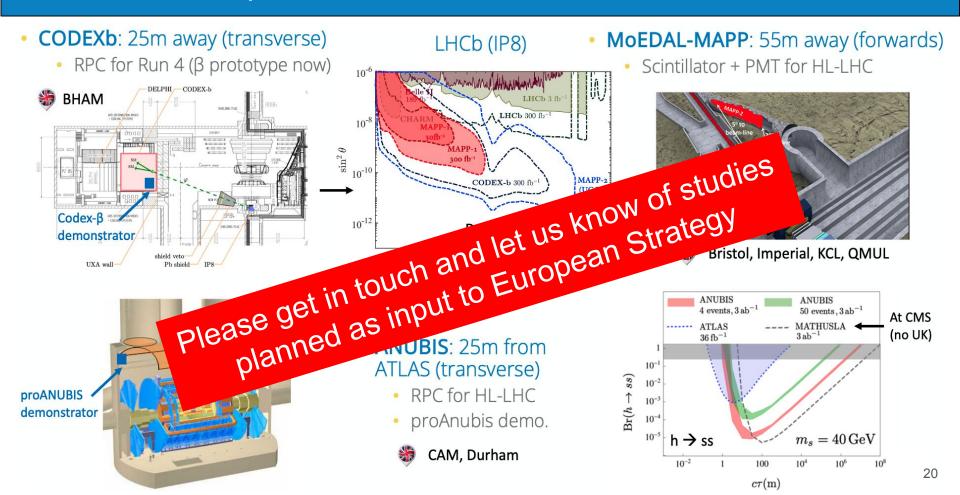
FPF Physics

Very broad physics program bring together many areas for modest cost

FPF Plans


- Aiming for LOI early 2025, followed shortly by TDR
 - Plenty of scope for more detailed studies and influencing detector design
- Many interesting FPF areas needing work e.g.
 - FIPs sensitivity beyond simple hidden sectors
 - Possibilities for alternative neutrino detectors
 - Measuring PDFs independent of new-physics
 - Constraining forward charm production

Contact relevant FPF WG conveners


- In addition to FASER2 detector studies e.g.
 - Addition of silicon precision layer
 - Finalisation of magnet specifications
 - Use as μ spectrometer for neutrino detectors
 - Medium-term test bed for new technology

Contact Alan Barr and Josh McFayden as FASER 2 conveners

Other FIPs Proposals with UK Involvement

Other FIPs Proposals with UK Involvement

Summary

- Wide theme, primarily focused around 2 areas: muons and FIPs
 - Apologies for any areas/studies we might have missed
 - Please let us know and we can add them for September
- Many opportunities to get involved, across wide range of physics
 - Input needed from both theory and experimental side
 - Also detector design and optimisation
- If you are interested in getting involved please get in touch!
 - With the contacts listed, keeping us in the loop