
CMS HLT GPU implementation

Thomas Reis

STFC PPD

Beginner's GPU programming course for UK particle physicists

 3rd September 2024

03.09.2024 GPU programming for UK particle physicists 2

The CMS experiment

• The CMS detector is one of four experiments at the CERN LHC

• Several sub-detectors use GPU code for local reconstruction

03.09.2024 GPU programming for UK particle physicists 3

Trigger

• CMS uses a two step trigger system to select interesting events for physics analysis

• Level-1 trigger (L1)
‣ Uses information from muon system and

calorimeters
‣ Sees all events
‣ Custom hardware boards with large FPGAs
‣ Firmware performs the reconstruction and

selection depending on physics analysis
requirements

‣ Trigger decision in 3.8 μs (fixed latency)
‣ Reduces event rate from 40 MHz to ~100 kHz

• High Level Trigger (HLT)

‣ Uses full detector information read out after L1
accepted an event

‣ Large filter farm using GPUs

‣ Runs CMSSW framework for reconstruction and
filtering

‣ ~O(450 ms) processing time per event

‣ Reduces L1 event rate to ~ 5 KHz

03.09.2024 GPU programming for UK particle physicists 4

High Level Trigger

• The High Level Trigger is part of the CMS data acquisition
chain

• For L1 accepted events the full detector information is
read out from the front end electronics and sent to the HLT
filter farm on the surface

• HLT paths reconstruct and select events based on physics
analysis requirements

‣ All paths together make the HLT “menu”

• Opportunistic use of capacity not required for triggering as
T2 grid site

• 2022 configuration:

‣ 200 nodes, each with

⁃ 2 AMD EPYC 7763 “Milan” (64 cores each)

⁃ 2 NVIDIA Tesla T4 GPUs (2560 CUDA cores, 16 GB
memory)

⁃ 256 GB system memory

‣ Total of 25,600 CPU cores and 400 GPUs

• 2024 upgrade:

‣ 18 nodes, each with

⁃ 2 AMD EPYC 9754 “Bergamo” (128 cores each)

⁃ 3 NVIDIA L4 GPUs (7680 CUDA cores, 24 GB
memory)

⁃ 768 GB system memory

‣ Addition of 4608 CPU cores and 54 GPUs (+20%)

03.09.2024 GPU programming for UK particle physicists 5

CMS software

• The CMS software framework (CMSSW) is used at the HLT, for offline reconstruction, and
simulation

‣ Open source on github with > 1.1k contributors

• Written in C++ with one executable (cmsRun)

‣ Plugin modules selected and configured by python scripts

• Multi-threaded processing

‣ Concurrent events, processed in streams

‣ Concurrent luminosity sections (~23 s chunks of data)

‣ Concurrent runs

• Full support for asynchronous work on external accelerators

Transitions seen during event processing

https://cms-sw.github.io/

03.09.2024 GPU programming for UK particle physicists 6

CMSSW modules

• CMSSW has different module types that are loaded dynamically

• EDProducers

‣ Take collections of objects as input and use them to produce derived collections

⁃ E.g. Take digitised samples and perform an amplitude reconstruction to output amplitude values

‣ A special version exists for asynchronous work

⁃ acquire() function launches the asynchronous work

⁃ produce() function is called once the asynchronous work has finished

• EDFilters

‣ Based on input collections make decisions if an event should be processed further

⁃ E.g. filter events with at least two muons with pT above a threshold

⁃ Particularly important for efficient processing of events at the HLT

• EDAnalyzers

‣ Analyse event data and e.g. produce histograms

• ESProducers

‣ Producing Event Setup conditions like calibrations or configurations

acquire() produce()

Kernel

CPU

Accelerator

other work

da
ta

callback

03.09.2024 GPU programming for UK particle physicists 7

CMSSW at the HLT

• HLT paths perform real time event reconstruction and selection

• One path consists of several EDProducers and EDFilters to gradually reconstruct more complex
information from the raw data

• Processing of events not passing a filter is stopped to save resources

Path
(Single electron pT > 32 GeV with tight selection)

EDProducers

EDFilters

Sequences of modules
(producers and/or filters)

03.09.2024 GPU programming for UK particle physicists 8

History of GPUs in CMS

• 2016: Start of investigations to offload reconstruction to GPUs

• 2017: CUDA code on pixel local reconstruction

• 2018 – 2020: R&D on algorithms and data structures, memory and caching

‣ CUDA algorithms for ECAL and HCAL local reconstruction

‣ Automatic offloading when GPUs are available

• 2021: Integration at the HLT

• 2022: Deployment of GPU reconstruction at the HLT

• 2023: Migration to Alpaka

‣ Framework support for Alpaka and new SoA format

‣ Migration of existing CUDA algorithms

• 2024: Deployment of Alpaka based code for some algorithms

03.09.2024 GPU programming for UK particle physicists 9

Why are we doing this?

• Because we can

‣ Many tasks in event reconstruction are independent of each other

⁃ E.g. unpacking and reconstruction of subdetector data

⁃ Independent reconstruction of channels

‣ Events are independent and can be processed concurrently

‣ Framework takes care of scheduling

• Because we have to
‣ High luminosity LHC updates will bring new highly

granular detectors and a 2.5 fold increase in
instantaneous luminosity

‣ This translates to 30x increase in required computing
resources for similar physics goals

‣ Not achievable with given budget by relying on
CPU performance increase alone

‣ Parallelism and algorithmic improvements are
needed

‣ Lower power consumption for same performance

03.09.2024 GPU programming for UK particle physicists 10

Current setup

• Offloading to GPUs is fully integrated in the CMSSW framework

• Part of the reconstruction algorithms rewritten to offload to GPUs

‣ Initially using CUDA for NVIDIA GPUs

‣ Partially ported to Alpaka

• Deployed at the HLT since the beginning of LHC Run 3 (2022)

‣ Algorithms: Pixel local reconstruction, Pixel tracking, ECAL and HCAL local reconstruction

‣ More algorithms being ported

• Offloading up to 40% of runtime to GPUs

• Validation and monitoring using the CMS Data Quality Monitoring system

‣ CPU vs. GPU validation of fraction of events from HLT

• Code can also be used for offline reconstruction

03.09.2024 GPU programming for UK particle physicists 11

Performance

• HLT with GPU offloading (2022 numbers)

‣ 40% less time per event

‣ 50% better performance per W

‣ 20% better performance per initial cost

No GPU, 32 threads, 24 streams GPU, no MPS, 32 threads, 24 streams

https://cds.cern.ch/record/2851656/files/DP2023_004.pdf

https://fwyzard.web.cern.ch/circles/web/piechart.php?local=false&dataset=Run3_HLT_12.4.10%2Fno%20GPUs%20-%2032%20threads%2C%2024%20streams&resource=time_real&colours=default&groups=hlt&threshold=0
https://fwyzard.web.cern.ch/circles/web/piechart.php?local=false&dataset=Run3_HLT_12.4.10%2FGPUs%20without%20MPS%20-%2032%20threads%2C%2024%20streams&resource=time_real&colours=default&groups=hlt&threshold=0
https://cds.cern.ch/record/2851656/files/DP2023_004.pdf

03.09.2024 GPU programming for UK particle physicists 12

Alpaka

• CMS has chosen Alpaka as performance portability library

• Alpaka provides portability of code for various backends by adding an abstraction layer for the
backends parallelism

• All backends of interest for CMS are supported

‣ Serial (CPU)

‣ NVIDIA and AMD GPUs

‣ Intel GPUs and FPGAs (experimental)

• Performance close to native code

• Open source
‣ Some improvements contributed already by CMS people

• Alpaka support added to CMSSW
‣ Documentation

‣ Examples

• Some CUDA algorithms ported to Alpaka and in production
‣ More currently being ported

‣ Some newly developed directly with alpaka

https://github.com/alpaka-group/alpaka/
https://github.com/cms-sw/cmssw/blob/master/HeterogeneousCore/AlpakaCore/README.md
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/AlpakaTest/plugins/alpaka

Framework implementation details

03.09.2024 GPU programming for UK particle physicists 14

SwitchProducerCUDA

• Separate CPU and CUDA versions of the algorithms

• The framework needs to run the right module based on the
availability of a GPU

• Solved by SwitchProducerCUDA module

‣ A special module in the python configuration for cmsRun
pointing to a CPU producer module or a GPU producer module

‣ Output collection type of the two branches must be the same

• In practice the GPU branch module is a module that
converts the GPU data format to the legacy CPU format

‣ The actual GPU algorithm module is automatically scheduled by
the framework to run before the conversion module

SwitchProducer

CPU producer

Input collection

GPU producer

Input format
converter

Host copy

GPU to CPU format
converter

Output collection

GPUCPU

03.09.2024 GPU programming for UK particle physicists 15

CMSSW and Alpaka

• Alpaka eliminates the need for a SwitchProducer module

‣ Backends are chosen automatically depending on availability

• Still requires a conversion module to legacy data formats for
downstream CPU modules

• The framework automatically takes care of the host copy if needed

‣ In case a CPU module requires a data product produced on an accelerator

• Automatic device copies are provided for conditions consumed on a
device

• Provides various functions to help with looping over elements

• The Alpaka dependent code is compiled for each backend

• Code for accelerators is placed in a special namespace whose values
depend on the backend the code is compiled for

Input collection

Alpaka producer

Input format
converter

Host copy
(automatic)

SoA to legacy
converter

Output collection

03.09.2024 GPU programming for UK particle physicists 16

Data formats

• In order to work efficiently parallel algorithms need data formatted as structures-of-arrays (SoA)

‣ Minimise memory access operations

‣ Legacy data formats in CMSSW are arrays-of structures (AoS)

‣ AoS “feels” more intuitive to may developers

• New generic SoA data format developed
‣ Usable with CUDA and Alpaka code

‣ Layout divides a buffer and views to access the data

‣ Supports columns (vectors), scalars, and Eigen like matrices

• Portable collections (host and device side) wrap
SoA format layout and views
‣ Manages buffer allocations, interface to memory transfers,

and serialisation to ROOT files

‣ Access syntax close to AoS

ECAL local reconstruction

03.09.2024 GPU programming for UK particle physicists 18

ECAL local reconstruction

• Raw data unpacking → EcalDigis

• Amplitude reconstruction

‣ Multifit algorithm

• Time reconstruction → EcalUncalibRecHits

‣ Ratio method

‣ Future: Cross correlation method

• Energy reconstruction → EcalRecHits

ECAL multifit reconstruction

Data collectionProcessing step

03.09.2024 GPU programming for UK particle physicists 19

ECAL local reconstruction on GPU

• Running at the HLT during Run 3

• Mostly migrated to Alpaka from original CUDA version

• Modules

‣ Unpacker for digis

‣ Multifit amplitude and time reconstruction

‣ Energy reconstruction

⁃ Not all CPU features are available in GPU version
E.g. Energy recovery

⁃ Not running at the HLT

‣ Various conversion modules between
legacy and portable data formats

ECAL reconstruction chain with GPUs

03.09.2024 GPU programming for UK particle physicists 20

ECAL portable data formats

• Data formats

‣ EcalDigiSoA

‣ EcalDigiPhase2SoA (for HL-LHC upgrade)

‣ EcalUncalibratedRecHitSoA

• Only digi data formats differ between Run 3 and Phase 2

• Explicit size scalar part of data format

‣ Because of zero suppression in raw data the number of digis is only known at runtime

• Conditions data formats (conditions for all channels also stored as SoA)

‣ EcalElectronicsMappingSoA

‣ EcalMultifitConditionsSoA

‣ EcalMultifitParametersSoA

ECALUncalibratedRecHitSoA

https://github.com/cms-sw/cmssw/blob/master/DataFormats/EcalDigi/interface/EcalDigiSoA.h
https://github.com/cms-sw/cmssw/blob/master/DataFormats/EcalDigi/interface/EcalDigiPhase2SoA.h
https://github.com/cms-sw/cmssw/blob/master/DataFormats/EcalRecHit/interface/EcalUncalibratedRecHitSoA.h
https://github.com/cms-sw/cmssw/blob/master/CondFormats/EcalObjects/interface/EcalElectronicsMappingSoA.h
https://github.com/cms-sw/cmssw/blob/master/CondFormats/EcalObjects/interface/EcalMultifitConditionsSoA.h
https://github.com/cms-sw/cmssw/blob/master/CondFormats/EcalObjects/interface/EcalMultifitParametersSoA.h

03.09.2024 GPU programming for UK particle physicists 21

Kernels

• In the current implementation all kernels use the same queue

• Unpacking kernel

‣ 1D kernel with 32 channels per block

• Amplitude kernels

‣ 1D and 2D kernels prepare the input data for the minimisation

‣ Minimisation kernel uses the same core function than HCAL algorithm

• Timing kernels
‣ 6 separate kernels for initialisation, correction for the pre-amplifier slew rate, calculation of the null hypothesis,

 ratio method calculation, chi2 and amplitude, and final time corrections

https://github.com/cms-sw/cmssw/blob/master/EventFilter/EcalRawToDigi/plugins/alpaka/UnpackPortable.dev.cc#L428-L439
https://github.com/cms-sw/cmssw/blob/master/RecoLocalCalo/EcalRecProducers/plugins/alpaka/EcalUncalibRecHitMultiFitAlgoPortable.dev.cc#L40-L95
https://github.com/cms-sw/cmssw/blob/master/RecoLocalCalo/EcalRecProducers/plugins/alpaka/EcalUncalibRecHitMultiFitAlgoPortable.dev.cc#L97-L231

03.09.2024 GPU programming for UK particle physicists 22

Experience during Run 3

• Significant improvement in reconstruction time (~50% faster)

• Initial memory consumption issues mitigated

‣ Optimised unpacker memory requirements

• Unpacking of corrupted raw data can lead to problems

‣ Not as many sanity checks as in CPU unpacker initially implemented

• GPU unpacker does not unpack auxiliary collections

‣ Initially not planned to use them at HLT

‣ Now the features are used in dead channel recovery and particle flow clustering

‣ Temporary workaround: Run CPU and GPU unpacker and use aux. collections from CPU unpacker

‣ Work ongoing to upgrade unpacker to unpack aux. collections

03.09.2024 GPU programming for UK particle physicists 23

Alpaka migration of ECAL local reconstruction

• New generic SoA formats and portable collections simplify algorithm code enormously

• Automatic device to host copies of data and host to device copies of conditions allow to remove
several dedicated framework modules

• Much of the kernel code did not need to be changed

‣ Mostly changes to kernel interfaces and due to use of new portable collections

‣ Core fit function could stay the same (also used by HCAL local reconstruction)

‣ Some loops needed to be split in outer and inner loops order to use shared memory

⁃ On GPU there are multiple threads each working on one element (no inner loop was needed in CUDA version)

⁃ On CPU one thread works on multiple elements and inner loops over the elements are needed, separated by
synchronisations

• Migration of unpacker and amplitude and time reconstruction modules still took more than a year

‣ ~5k lines of code spread over ~100 files

‣ Adapt to framework changes while migrating

‣ Due to the Alpaka design the compilation errors can be very hard to understand which makes debugging slow

• Reconstruction time practically unchanged from CUDA version

• Improved CPU vs. GPU agreement

‣ Yes, it is the same code but compiled differently and small discrepancies can still exist

03.09.2024 GPU programming for UK particle physicists 24

‣ Differences wrt. Run 3 reconstruction
⁃ No ECAL endcaps

⁃ Shorter pulses

⁃ 16 samples per digi instead of 10

⁃ 160 MHz sampling frequency instead of 40 MHz

⁃

‣ Similarities wrt. Run 3 reconstruction
⁃ ECAL barrel remains

⁃ Same or similar data formats

⁃ Same or similar reconstruction modules

• Likely to use multifit algorithm for amplitude reconstruction

• May reconstruct fewer Out-of-time PU pulses since pulses are shorter

‣ A weights based amplitude and time reconstruction was developed as baseline

‣ CUDA version of the weights algorithm developed by Southampton master student

‣ Alpaka migration by a second master student almost finished

HL-LHC ECAL local reconstruction

ECAL HL-LHC upgrade pulses

Ongoing and future developments

03.09.2024 GPU programming for UK particle physicists 26

Future improvements

• Work ongoing to migrate more modules to Alpaka

‣ E.g. ECAL energy reconstruction

• Currently testing with non-NVIDIA GPUs (AMD)

• Add missing links to chain algorithms together on device

‣ Avoid expensive copies of data back to host memory

• New developments for accelerators

‣ Particle Flow clustering, Strip unpacking and clustering, Primary vertex reconstruction, Electron seeding
algorithm

• Use portable code also for offline reconstruction

• Further in the future: remove legacy code

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

