Other GPU frameworks

3 September 2024

Stewart Martin-Haugh (STFC RAL) : 1/13



GPU language recap

Everything has
» Host compiler (e.g. gecc)
> Device compiler (e.g. nvce, hipcc)
» API to allocate memory, synchronise etc (cudaMalloc,
cudaDeviceSynchronize)

Language extensions have
> Extra syntax for indicating device functions
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CUDA advantages

» CUDA is the frontrunner
» Nvidia hardware is the most commonly installed
> E.g. no ATLAS grid sites with non-Nvidia GPUs (for now!)
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CUDA

» Very powerful, but only runs on Nvidia hardware
» Cannot compile for CPU only

» Ocelot project aims to make this possible, but does not have official
support
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https://github.com/gpuocelot/gpuocelot

AMD GPUs

ATI RAGE FURY - True 3
without compromisin

History
» ATI video game graphics cards
» Bought by AMD in 2006

» General purpose GPU
programming with ROCm
framework, HIP
language/compiler

The fastest frame rates with 32-bit color
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ROCm/HIP

» Syntax similar to CUDA
» Find and replace possible for basic programs

» Similar ecosystem available, but less user-friendly

hipify-perl vector_add.cu > vector_add.hip
hipcc -o hipify_vector_add vector_add.hip
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SYCL

» Open standard, pushed by Intel

» Implementations for all GPU vendors and CPU (also Intel/Altera
FPGA)
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https://indico.cern.ch/event/1399219/contributions/6012655/

al~aka

» Clever C++ (templates, mainly) to generate a variety of different
backends
» Can write something similar to CUDA or SYCL
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Kokkos

» Contains higher-level abstractions
» Good support

#include <Kokkos_Core.hpp>
#include <cstdio>
#include <typeinfo>

struct hello_world {
KOKKOS_INLINE_FUNCTION
void operator() (const int i) const {
Kokkos: :printf ("Hello from i = %i\n", 1i);
}
};

int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);

printf("Hello World on Kokkos execution space %s\n",
typeid (Kokkos: :DefaultExecutionSpace) .name());
Kokkos: :parallel_for("HelloWorld", 15, hello_world());
Kokkos: :finalize();
}
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Summary of major options

NVidia AMD Intel CPU

CUDA Vv X X Ish
HIP v v Ish Ish
SYCL v v v v
Alpaka Vv v v v
Kokkos v v v v
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The future? standard C++

» From C++17 onwards, four execution policies:

> std::execution::seq: Sequential execution. No parallelism is
allowed.

> std::execution::unseq: Vectorized execution on the calling
thread (this execution policy was added in C++-20).

> std::execution: :par: Parallel execution on one or more threads.

> std::execution::par_unseq: Parallel execution on one or more
threads, with each thread possibly vectorized.

» Support from compilers
» Interest from NVidia

» Could eventually write standard C++ and specify target GPU at
compile-time...

» But we're not there yet
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Comparison with writing performant CPU code

» Using all the capabilities of a modern x86 CPU doesn’t happen
out-of-the-box

> Still takes significant expertise to get good performance despite 20
years of x86 standard: compilers are clever but don't do everything

> But we can at least

» Compile for ARM, PowerPC without too much effort and get

something that largely works
> Get something that works on Intel and AMD x86 (limited vendor

changes)
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Live demo

StewMH /gpu_translate on GitHub
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https://github.com/StewMH/gpu_translate

