Other GPU frameworks

3 September 2024

Stewart Martin-Haugh (STFC RAL) : 1/13

GPU language recap

Everything has
» Host compiler (e.g. gecc)
> Device compiler (e.g. nvce, hipcc)
» API to allocate memory, synchronise etc (cudaMalloc,
cudaDeviceSynchronize)

Language extensions have
> Extra syntax for indicating device functions

Stewart Martin-Haugh (STFC RAL)

CUDA advantages

» CUDA is the frontrunner
» Nvidia hardware is the most commonly installed
> E.g. no ATLAS grid sites with non-Nvidia GPUs (for now!)

Slots of Running jobs ®

0423 0426 o429 0s/02 05/05 05/08 osm os/14 0s/17 05/20

min max avgv

UKI-LT2-GMUL.GPU 0 %7 101
FZK-LCO2.GPU 0 197 693
UKI-NORTHGRID-MAN-HEP_GPU o w195

— ANALY.QMULGPU o 8 osa2

Stewart Martin-Haugh (STFC RAL)

CUDA

» Very powerful, but only runs on Nvidia hardware
» Cannot compile for CPU only

» Ocelot project aims to make this possible, but does not have official
support

Stewart Martin-Haugh (STFC RAL) 4/13

https://github.com/gpuocelot/gpuocelot

AMD GPUs

ATI RAGE FURY - True 3
without compromisin

History
» ATI video game graphics cards
» Bought by AMD in 2006

» General purpose GPU
programming with ROCm
framework, HIP
language/compiler

The fastest frame rates with 32-bit color

Stewart Martin-Haugh (STFC RAL)

ROCm/HIP

» Syntax similar to CUDA
» Find and replace possible for basic programs

» Similar ecosystem available, but less user-friendly

hipify-perl vector_add.cu > vector_add.hip
hipcc -o hipify_vector_add vector_add.hip

Stewart Martin-Haugh (STFC RAL)

SYCL

» Open standard, pushed by Intel

» Implementations for all GPU vendors and CPU (also Intel/Altera
FPGA)

Standard C++ |

One-MKL Complex ML frameworks

—N Ly 4l
One-DNN [> C++ Libraries H\ T | ML Frameworks ’ can be directly compiled
OneDPC ¥ [v"| Application Code | 4 TeNSOFION g accoloratud

SYCL-BLAS : T S 4

SYCL-Eigen h 4

SYCL-DNN \ "

SYCL Parallel STL C++Template C++ Template C++ Template C++ templates and lambda
il e ekl functions separate host &
- Libraries Libraries Libraries accelerated device code
B I g
L 1/ ¥ {7

C++ Kernel Fusion can

give better performance : | . ; . w
e e ((SYCL ‘ SYCL Compiler ‘ CPU Compiler M\] (o
libs than hand-coding J ae ¢/ vVisual C++

v A 4
ohentt || Other Backends cru |
= 0
ccelerated code > . SYCL is ideal for accelerating
piig[rﬁ'u:’:é\v)g; S ‘\ cPu ‘ D= ” A C++ based engines and applications
OpenCL compilers Al/Tensor HW ‘ Custom Hardware with performance portability

» More details and examples here

(STFC RA

https://indico.cern.ch/event/1399219/contributions/6012655/

al~aka

» Clever C++ (templates, mainly) to generate a variety of different
backends
» Can write something similar to CUDA or SYCL

Accelerator Back-ends

Accelerator . . Execution strategy Execution strategy
Lib/API D .
Back-end ib] evices grid-blocks block-threads
Serial n/a H?s(CPU sequential sequential (only 1 thread
(single core) per block)
OpenMP 2.0+ OpenMP Host CPU (multi parallel (preemptive sequential (only 1thread
blocks: 2.0+ core) multitasking) per block)
OpenMP 2.0+ OpenMP Host CPU (multi sequential para!le\ (Preemplive
threads 2.0+ core) multitasking)
Host CPU lti llel ti
std::thread std::thread oS () sequential el (FE=nEiD
core) multitasking)
TBB TBB 2.2+ Host CPU (multi para‘l\el (?reempuve sequential (only 1thread
core) multitasking) per block)
llel (lock-sty jithi
CUDA CUDA90+ NVIDIAGPUs parallel (undefined) FEEIGI s STl
warps)
llel (lock-sts ithi
HIP (clang) HIP 5.1+ AMD GPUs parallel (undefined) parallel {lock-step within

warps)

Kokkos

» Contains higher-level abstractions
» Good support

#include <Kokkos_Core.hpp>
#include <cstdio>
#include <typeinfo>

struct hello_world {
KOKKOS_INLINE_FUNCTION
void operator() (const int i) const {
Kokkos: :printf ("Hello from i = %i\n", 1i);
}
};

int main(int argc, char* argv[]) {
Kokkos::initialize(argc, argv);

printf("Hello World on Kokkos execution space %s\n",
typeid (Kokkos: :DefaultExecutionSpace) .name());
Kokkos: :parallel_for("HelloWorld", 15, hello_world());
Kokkos: :finalize();
}

Stewart Martin-Haugh (STFC RAL)

Summary of major options

NVidia AMD Intel CPU

CUDA Vv X X Ish
HIP v v Ish Ish
SYCL v v v v
Alpaka Vv v v v
Kokkos v v v v

Stewart Martin-Haugh (STFC RAL) 10/13

The future? standard C++

» From C++17 onwards, four execution policies:

> std::execution::seq: Sequential execution. No parallelism is
allowed.

> std::execution::unseq: Vectorized execution on the calling
thread (this execution policy was added in C++-20).

> std::execution: :par: Parallel execution on one or more threads.

> std::execution::par_unseq: Parallel execution on one or more
threads, with each thread possibly vectorized.

» Support from compilers
» Interest from NVidia

» Could eventually write standard C++ and specify target GPU at
compile-time...

» But we're not there yet

Stewart Martin-Haugh (STFC RAL) 11/13

Comparison with writing performant CPU code

» Using all the capabilities of a modern x86 CPU doesn’t happen
out-of-the-box

> Still takes significant expertise to get good performance despite 20
years of x86 standard: compilers are clever but don't do everything

> But we can at least

» Compile for ARM, PowerPC without too much effort and get

something that largely works
> Get something that works on Intel and AMD x86 (limited vendor

changes)

Stewart Martin-Haugh (STFC RAL) 12/13

Live demo

StewMH /gpu_translate on GitHub

Stewart Martin-Haugh (STFC RAL) 13/13

https://github.com/StewMH/gpu_translate

