
Other GPU frameworks

Stewart Martin-Haugh (RAL)

GPU Training, RAL
3 September 2024

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 1 / 13

GPU language recap

Everything has
I Host compiler (e.g. gcc)
I Device compiler (e.g. nvcc, hipcc)
I API to allocate memory, synchronise etc (cudaMalloc,

cudaDeviceSynchronize)
Language extensions have
I Extra syntax for indicating device functions

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 2 / 13

CUDA advantages

I CUDA is the frontrunner
I Nvidia hardware is the most commonly installed

I E.g. no ATLAS grid sites with non-Nvidia GPUs (for now!)

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 3 / 13

CUDA

I Very powerful, but only runs on Nvidia hardware
I Cannot compile for CPU only

I Ocelot project aims to make this possible, but does not have official
support

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 4 / 13

https://github.com/gpuocelot/gpuocelot

AMD GPUs

History
I ATI video game graphics cards
I Bought by AMD in 2006
I General purpose GPU

programming with ROCm
framework, HIP
language/compiler

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 5 / 13

ROCm/HIP

I Syntax similar to CUDA
I Find and replace possible for basic programs
I Similar ecosystem available, but less user-friendly

 hipify-perl vector_add.cu > vector_add.hip
 hipcc -o hipify_vector_add vector_add.hip

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 6 / 13

SYCL

I Open standard, pushed by Intel
I Implementations for all GPU vendors and CPU (also Intel/Altera

FPGA)

I More details and examples here

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 7 / 13

https://indico.cern.ch/event/1399219/contributions/6012655/

I Clever C++ (templates, mainly) to generate a variety of different
backends

I Can write something similar to CUDA or SYCL

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 8 / 13

Kokkos
I Contains higher-level abstractions
I Good support

#include <Kokkos_Core.hpp>
#include <cstdio>
#include <typeinfo>

struct hello_world {
 KOKKOS_INLINE_FUNCTION
 void operator()(const int i) const {
 Kokkos::printf("Hello from i = %i\n", i);
 }
};

int main(int argc, char* argv[]) {
 Kokkos::initialize(argc, argv);

 printf("Hello World on Kokkos execution space %s\n",
 typeid(Kokkos::DefaultExecutionSpace).name());
 Kokkos::parallel_for("HelloWorld", 15, hello_world());
 Kokkos::finalize();
}

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 9 / 13

Summary of major options

NVidia AMD Intel CPU
CUDA 3 7 7 Ish
HIP 3 3 Ish Ish
SYCL 3 3 3 3
Alpaka 3 3 3 3
Kokkos 3 3 3 3

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 10 / 13

The future? standard C++

I From C++17 onwards, four execution policies:
I std::execution::seq: Sequential execution. No parallelism is

allowed.
I std::execution::unseq: Vectorized execution on the calling

thread (this execution policy was added in C++20).
I std::execution::par: Parallel execution on one or more threads.
I std::execution::par_unseq: Parallel execution on one or more

threads, with each thread possibly vectorized.
I Support from compilers
I Interest from NVidia
I Could eventually write standard C++ and specify target GPU at

compile-time...
I But we’re not there yet

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 11 / 13

Comparison with writing performant CPU code

I Using all the capabilities of a modern x86 CPU doesn’t happen
out-of-the-box

I Still takes significant expertise to get good performance despite 20
years of x86 standard: compilers are clever but don’t do everything

I But we can at least
I Compile for ARM, PowerPC without too much effort and get

something that largely works
I Get something that works on Intel and AMD x86 (limited vendor

changes)

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 12 / 13

Live demo

StewMH/gpu_translate on GitHub

Stewart Martin-Haugh (STFC RAL) Other GPU frameworks 13 / 13

https://github.com/StewMH/gpu_translate

